Marks

This is a closed book exam. No notes are permitted.

1. Evaluate the following integrals:

8 \(\int \sin^3 x \, dx \) \quad (b) \(\int \sin^{-1} x \, dx \)

12 \(\int \frac{\sqrt{x^2 - 1}}{x^4} \, dx \) \quad (d) \(\int_1^\infty \frac{(4x + 25)}{x(x^2 + 25)} \, dx \)

16 2. Let \(R \) be the region in the first quadrant in the \(xy \)-plane which is bounded by the graph of \(y = \sqrt{x} \), the line \(y = 8 \), and the \(y \)-axis. Find the following:

(a) The area of \(R \).

(b) The volume \(V_x \) of the solid generated when \(R \) is revolved about the \(x \)-axis.

(c) The volume \(V_y \) of the solid generated when \(R \) is revolved about the \(y \)-axis.

(d) The area of the surface generated when \(R \) is revolved about the \(y \)-axis.

8 3. Let \(L \) be the length of the portion of the curve \(y = \ln x \) lying between the points \((1,0)\) and \((e,1)\). Express \(L \) as a definite integral and find \(L \) either by using the Fundamental Theorem of Calculus or by using the Trapezoid Rule with four equal subintervals.

10 4. When sugar dissolves in water, it dissolves at a rate proportional to the amount of undisolved sugar present. After 2 minutes, 75% of an initial portion of sugar is still undisolved.

(a) How long does it take for 75% of the initial portion of sugar to dissolve?

(b) After 5 minutes, there are 30 grams of undisolved sugar left. How much sugar was present originally?

12 5. Find the following limits:

(a) \(\lim_{x \to 1} \frac{\tan(\pi x)}{x^3 - 1} \) \quad (b) \(\lim_{x \to 0} \frac{x^2 e^x}{\cos(4x) - 1} \)

(c) \(\lim_{x \to \infty} x \ln \left(\frac{x + a}{x - a} \right) \) where \(a > 0 \).
6. At time t days the biomass $M = M(t)$, in grams, of a cell culture is given by $M = \frac{5}{1 + 4e^{-t}}$.

(a) Find $\lim_{t \to \infty} M(t)$.

(b) Calculate $\frac{dM}{dt}$ and verify that $\frac{dM}{dt} = \frac{1}{5}M(5 - M)$.

(c) What is the maximum rate of growth of M?

(d) What is the average biomass of the cell culture for the time period between $t = 2$ days and $t = 10$ days?

7. A car is traveling at 30 miles per hour (44 feet per second). Once the brakes are applied, the car decelerates at a constant rate and travels 200 feet before coming to a complete stop. How much time does it take for this car to go from 30 miles per hour to a complete stop?

8. If the closed interval $[a,b]$ is partitioned into n equal subintervals, each of width Δx, by the numbers $a = x_0 < x_1 < x_2 < x_3 < \ldots < x_{n-1} < x_n = b$, then

\[\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{x_i} \Delta x = C(b^p - a^p) \] for what constants C and p?

9. If $\frac{df}{dx} = \frac{x^2}{x^3 + 1}$ and $f(1) = 2$, then what is $f(4)$?

10. Find the area of the region enclosed by the graphs of $f(x) = 6 - x^2$ and $g(x) = |x|$.

11. (a) Find the center, radius and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{3^n(x - 2)^n}{n + 1}$.

(b) If the series in (a) represents a function $f(x)$, find a power series representation for $f'(x)$. For what values of x would this power series representation be expected to converge to $f'(x)$?

12. Consider $f(x) = \int_{0}^{x} \frac{\sin(t^3)}{t} dt$.

(a) Find the Maclaurin series for $f(x)$.

(b) How many non-zero terms of the series in (a) are needed to calculate $f(1)$ with $|\text{error}| \leq 5 \times 10^{-4}$?