1. (a) #13; Section 4.10; p. 233: Write a MATLAB function to find the singular value decomposition of a matrix A using only functions designed to compute eigenvalues and eigenvectors of matrices. That is, you can use functions such as eig, powerit and QRit, but do not use the built-in function svd.

(b) Use your MATLAB function in (a) to find the singular value decomposition of the matrix $A = \begin{bmatrix} 3 & 9 & 3 \\ 1 & 7 & 5 \\ 1 & 7 & 5 \\ 3 & 9 & 3 \end{bmatrix}$. This means find matrices Σ, U and V, such that $A = U\Sigma V^T$.

(c) Find an orthogonal matrix Q and a diagonal matrix D such that $AA^T = QDQ^T$, without calculating AA^T.

(d) Find an orthonormal basis for (i) the left nullspace of A and (ii) an orthonormal basis for the nullspace of A, using your answer to part (b).

(e) Find the orthogonal projection of $b = \begin{bmatrix} 54 \\ 0 \\ 36 \\ 72 \end{bmatrix}$ onto the column space of A.

48