Consider the function \(g : \mathbb{R} \to \mathbb{R} \) defined by
\[g(x) = \frac{1}{1 + 2 \lfloor x \rfloor - x} \]
where for any \(x \in \mathbb{R} \), \(\lfloor x \rfloor \) denotes the largest natural number less than or equal to \(x \). (For example, \(\lfloor \pi \rfloor = 3 \), \(\lfloor 3 \rfloor = 3 \), and \(\lfloor 3.99999 \rfloor = 3 \).) Let \(f : \mathbb{N} \to \mathbb{Q} \) be the function defined by the following rule:
\[f(n) = (g \circ \cdots \circ g)(0). \]

Then prove that \(f \) is a bijection between \(\mathbb{N} \) and \(\mathbb{Q}_+ \), where \(\mathbb{Q}_+ \) denotes the set \(\{ x \in \mathbb{Q} : x \geq 0 \} \).