Definition (Multiplication of natural numbers). Let m be a natural number. To multiply zero to m we define $0 \times m := 0$. Suppose inductively that we have defined how to multiply n to m. Then we can multiply $n++$ to m by defining $(n++) \times m := (n \times m) + m$.

Using the Peano Axioms and elementary properties of addition, prove the following propositions.

Proposition (Multiplication is commutative). Let n, m be natural numbers. Then $n \times m = m \times n$.

Lemma (Natural numbers have no zero divisors). Let n, m be natural numbers. Then $n \times m = 0$ if and only if at least one of n, m is equal to zero.

Proposition (Distributive law). For any natural numbers a, b, c, we have $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$.

Proposition (Multiplication is associative). For any natural numbers a, b, c, we have $(a \times b) \times c = a \times (b \times c)$.

Proposition (Multiplication preserves order). If a and b are natural numbers such that $a < b$ and c is positive, then $ac < bc$.

Proposition (Cancelation law). Let a, b, c be natural numbers such that $ac = bc$, and suppose c is nonzero. Then $a = b$.

Proposition (Euclidean algorithm). Let n be a natural number, and let q be a positive natural number. Then there exist natural numbers m, r such that $0 \leq r < q$ and $n = mq + r$.