1. Let $A = \{a, b\}$ and let $R = \{(a, b)\}$. Is R an equivalence relation on A? Justify your conclusion.

2. Let $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | |x| + |y| = 4\}$. Then R is a relation on \mathbb{R}. Is R an equivalence relation on \mathbb{R}? Justify your conclusion.

3. A relation R is defined on \mathbb{Z} as follows: for all $a, b \in \mathbb{Z}$, aRb if and only if $|a - b| \leq 3$. Is R an equivalence relation on \mathbb{R}? Justify your conclusion.

4. Let $A = \{1, 2, 3, 4, 5\}$. The identity relation on A is $I_A = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}$. Find an equivalence relation on A that is different from I_A.

5. Let $A = \{a, b, c\}$. For each of the following, draw a directed graph that represents a relation with the specified properties:
 (a) A relation on A that is symmetric but not transitive.
 (b) A relation on A that is transitive but not symmetric.
 (c) A relation on A that is symmetric and transitive but not reflexive.
 (d) A relation on A that is not reflexive, is not symmetric, and is not transitive.
 (e) A relation on A, other than the identity relation, that is an equivalence relation.

6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 - 4$ for each $x \in \mathbb{R}$. Define a relation \sim on \mathbb{R} as follows: for $a, b \in \mathbb{R}$, $a \sim b$ if and only if $f(a) = f(b)$.
 (a) Is the relation \sim an equivalence relation on \mathbb{R}? Justify your conclusion.
 (b) Determine all real numbers in the set $C = \{x \in \mathbb{R} | x \sim \sqrt{2}\}$.

7. Let \sim and \approx be relations on \mathbb{Z} defined as follows:
 • For $a, b \in \mathbb{Z}$, $a \sim b$ if and only if 2 divides $a + b$.
 • For $a, b \in \mathbb{Z}$, $a \approx b$ if and only if 3 divides $a + b$.
 (a) Is \sim an equivalence relation on \mathbb{Z}? Justify your conclusion.
 (b) Is \approx an equivalence relation on \mathbb{Z}? Justify your conclusion.

8. Define the relation \sim on \mathbb{R} as follows: for $x, y \in \mathbb{R}$, $x \sim y$ if and only if $x - y \in \mathbb{Q}$.
 (a) Prove that \sim is an equivalence relation on \mathbb{R}.
 (b) List four different real numbers that are in the equivalence class of $\sqrt{2}$.

(c) If $a \in \mathbb{Q}$, what is the equivalence class of a?
(d) Prove that $[\sqrt{2}] = \{r + \sqrt{2} \mid r \in \mathbb{Q}\}$.
(e) If $a \in \mathbb{Q}$, prove that there is a bijection from $[a]$ to $[\sqrt{2}]$.

9. Let U be a fixed infinite universe, over which all sets from now on invoked will range. Let \leq be the following relation on the power set 2^U of U: for $A, B \subseteq U$, $A \leq B$ if and only if there exists a function $f : A \rightarrow B$ such that f is injective.

(a) Is \leq a reflexive relation on 2^U? Justify your answer.
(b) Is \leq a symmetric relation on 2^U? Justify your answer.
(c) Is \leq a transitive relation on 2^U? Justify your answer. (Hint: you may here appeal to any relevant exercise from previous worksheets.)
(d) Is \leq an antisymmetric relation on 2^U? Justify your answer. (**)
(e) Is \leq a complete relation on 2^U? Justify your answer. (**)