(1) Define an explicit bijection between \mathbb{N} and \mathbb{Z}_+, and prove that it is indeed a bijection.

(2) Define an explicit bijection between \mathbb{N} and \mathbb{Z}, and prove that it is indeed a bijection.

(3) Define an explicit bijection between \mathbb{N} and \mathbb{Q}_+.

Definition. A set A is said to be *countable* if there exists a bijection between A and \mathbb{N}. (For example, \mathbb{Q} is countable.)

(4) Prove that $]0, 1[$ is not countable.

(5) Since we have shown $]0, 1[$ to be equinumerous with \mathbb{R}, make the appropriate conclusion about \mathbb{R}.

 (Hint: time to go back to your solution of the appropriate problem from a past worksheet.)

(6) Suppose that I is a countable set, and that for each $i \in I$, A_i is a countable set. Prove that $\bigcup_{i \in I} A_i$ is a countable set.

(7) Let A be the set of all functions $f : \mathbb{N} \to \mathbb{Q}$ satisfying the following property: there exists $n \in \mathbb{N}$ such that for all $p \in \mathbb{N}$, $n \leq p \Rightarrow f(n) = f(p)$. Prove that A is countable.