1 Evaluate the expression

\[\log_{10} 1000 \]

2 Use the properties of logarithms to solve the equation for \(x \).

\[\ln(3x - 1) - \ln(x - 1) = \ln 8 \]

a. \(x = 0 \)
 b. \(x = -\frac{7}{5} \)
 c. \(x = \frac{5}{7} \)
 d. \(x = \frac{1}{5} \)
 e. \(x = \frac{7}{5} \)

3 Solve the equation for \(x \).

\[\log_2 (9 + x) = 5 \]

4 Sketch the graph of the function.

\[g(x) = \log_3 (x - 1) + 4 \]

Select the correct graph.

- A
- B
- C
- D

5 Determine the values of \(x \) that satisfy the expression

\[\ln \left(x^2 + 3 \right) = \ln (x - 2) + \ln (x + 3) \]
6 Use the properties of logarithms to simplify the expression so that the result does not contain logarithms of products, quotients, or powers. Assume that all necessary conditions are satisfied.

\[\log_2 (8x - 1)^6 \]

7 Determine all values of \(x \) that satisfy the following equation.

\[x^2 4^{x/2} - x 2^x + 1 - 3 \cdot 2^x = 0 \]

8 Rewrite the expression as a single logarithm.

\[\ln (x - 1) + \frac{1}{2} \ln x - 5 \ln x \]

9 Rewrite the expression as a single logarithm.

\[\ln x + 2 \ln (x + 5) \]
10 Sketch the graph, showing any horizontal asymptotes.

\[f(x) = e^{x - 2} + 3 \]

a.

b.

d.

e.

c.

11 Determine the domain of \(f(x) = \sqrt{\frac{2x + 3x}{e^{x} - xe - 2e}} \).
12 Use the properties of logarithms to simplify the expression so that the result does not contain logarithms of products, quotients, or powers. Assume that all necessary conditions are satisfied.

\[
\ln \frac{x^4 \sqrt{x - 1}}{\sqrt[3]{x^2 + 8x + 16}}
\]

a. \(4 \ln x - \frac{1}{2} \ln(x - 1) + \frac{2}{3} \ln(x - 4)\)

b. \(4 \ln x + \frac{1}{2} \ln(x - 1) - \frac{2}{3} \ln(x + 8)\)

c. \(\frac{1}{2} \ln(x - 1) - \frac{2}{3} \ln(x + 4)\)

d. \(4 \ln x + \frac{1}{2} \ln(x - 1) - \frac{2}{3} \ln(x + 4)\)

e. \(5 \ln x + \frac{1}{2} \ln(x - 1) - \frac{2}{3} \ln(x + 4)\)

13 Sketch the graph of \(f(x) = 4 - e^{x - 3}\).

Select the correct graph.

14 Evaluate the expression.

\[\ln e^{1/2}\]

a. 2

b. \(e\)

c. \(\frac{1}{2}\)

d. \(e^{1/2}\)

e. \(e^2\)
15 Evaluate the expression.

\[\log_{625} 5 \]

16 Determine all values of \(x \) that satisfy the following equation.

\[2^{2x - 3} = 8 \]

17 Determine all values of \(x \) that satisfy the following equation.

\[3^x - 5 = 9^x + 2 \]

18 Find the domain of the function

\[f(x) = \ln \left(\frac{x^2 - 4}{x - 5} \right) \]

19 Use the inverse relationship with the exponential functions to determine \(x \)

\[x = \log_4 64 \]

20 Use the properties of logarithms to simplify the expression so that the result does not contain logarithms of products, quotients, or powers.

\[\ln x (x + 6) \]
ANSWER KEY

Exponentials and Logarithms

1. 3
2. e
3. 23
4. D
5. 9
6. \(6 \log_2 (8x-1)\)
7. -1,3
8. \(\ln \frac{x-1}{\sqrt[5]{x}}\)
9. \(\ln x(x+5)^2\)
10. b
11. \((-\infty, 1) \cup [2, \infty)\)
12. d
13. B
14. c
15. \(\frac{1}{4}\)
16. 3
17. -9
18. \((-2,2) \cup (5, \infty)\)
19. 3
20. \(\ln(x) + \ln(x+6)\)