1. Compute
\[\lim_{n \to \infty} \left| \sin \left(\pi \sqrt{n^2 + n + 1} \right) \right|. \]

2. Let \(k \) be a positive integer and \(\mu \) a positive real number. Prove that
\[\lim_{n \to \infty} (n^k) \left(\frac{\mu}{n} \right)^k \left(1 - \frac{\mu}{n} \right)^{n-k} = \frac{\mu^k}{e^\mu \cdot k!}. \]

3. For \(a \in \mathbb{R} \), calculate
\[\lim_{n \to \infty} \frac{1}{n} \left(\left(a + \frac{1}{n} \right)^2 + \left(a + \frac{2}{n} \right)^2 + \cdots + \left(a + \frac{n-1}{n} \right)^2 \right). \]

4. Find all cluster points of the sequence \((a_n)\) described by
\[a_n = \left(1 + \frac{1}{n} \right)^n (-1)^n + \sin \left(\frac{n\pi}{4} \right) \]
and find \(\lim \sup a_n \) and \(\lim \inf a_n \).

We say that a series \(\sum x_i \) in a normed space \((X, \| \cdot \|)\) is absolutely convergent if \(\sum \|x_i\| < \infty \). Recall that \(\sum x_i \) is called convergent if the sequence \(s_n = \sum_{i=1}^{n} x_i \) is convergent in \(X \).

5. Show that a normed space \((X, \| \cdot \|)\) is complete if and only if every absolutely convergent series in \(X \) is convergent.

6. Does there exist a positive sequence \((a_n)\) such that both \(\sum a_n \) and \(\sum 1/(n^2 a_n) \) are convergent?