1. Describe the atomic truth assignments on \(\{a_1, \ldots, a_n\} \) that satisfy the proposition
\[p = ((a_1 \rightarrow a_2) \land (a_2 \rightarrow a_3) \land \cdots \land (a_{n-1} \rightarrow a_n)) \] (15 points)
2. Let L be a language and let $A[x, y]$ be an arbitrary L-formula with two free variables. Is the sentence $\forall x \exists y A[x, y] \rightarrow \exists y \forall x A[x, y]$ satisfied in any L-structure? Explain. (15 points)

3. Let $L = \{R\}$, where R is a binary relation symbol. Let $\mathcal{A} = (\mathbb{Q}, \leq)$ and $\mathcal{B} = (\mathbb{Z}, \leq)$. Write down an L-sentence which is true in \mathcal{A} but false in \mathcal{B}. (15 points)
4. The language L consists of a single binary relation symbol R. Consider the L-structure \mathcal{A} whose underlying set is $A = \{ n \in \mathbb{N} \mid n \geq 2 \}$ and in which R is interpreted by the relation ‘divides’, i.e. $R^\mathcal{A}$ is defined for all integers $m, n \geq 2$ by the condition: $(m, n) \in R^\mathcal{A}$ if and only if m divides n. Describe the set of elements of A that satisfy the L-formula $\varphi = \forall y \forall z ((R(y, x) \land R(z, x)) \rightarrow (R(y, z) \lor R(z, y)))$. (15 points)

5. Show that the following sets are 0-definable in the corresponding structures:

(a) The ordering relation $\{(m, n) \in \mathbb{N}^2 \mid m < n \}$ in $(\mathbb{N}, 0, +)$. (15 points)
(b) The set of prime numbers in the semiring $\mathcal{N} = (\mathbb{N}, 0, 1, +, \cdot)$. (15 points)

(c) The set $\{2^n \mid n \in \mathbb{N}\}$ in the semiring \mathcal{N}. (15 points)
(d) The set \(\{ a \in \mathbb{R} \mid f \text{ is continuous at } a \} \) in \((\mathbb{R}, <, f)\) where \(f : \mathbb{R} \to \mathbb{R} \) is any function. (15 points)

6. The language \(L \) consists of a single binary relation symbol \(E \). Write down sentences expressing that the interpretation of \(E \) is an equivalence relation having infinitely many equivalence classes, each of which has infinitely many elements. (20 points)