1. Answer the following questions:

(a) Suppose Σ is an infinite set of L-sentences, and that you know for a fact that every finite subset Σ_0 of Σ is consistent. What theorem allows you to conclude that Σ itself has a model?
A: _________________________________ (4 points)

(b) Suppose that \mathcal{A} is an L-structure and you wish to find a “larger” structure \mathcal{B} such that \mathcal{A} is an elementary substructure of \mathcal{B}. What theorem can you use?
A: _________________________________ (4 points)

(c) Suppose that L is a countable language and that \mathcal{A} is an L-structure that contains a given set C. Is there a countable elementary substructure \mathcal{B} of \mathcal{A} such that $C \subseteq B$? If so, what theorem guarantees this? If not, why not?
A: _________________________________ (4 points)

2. Show that the set of prime numbers is 0-definable in the semiring $\mathcal{N} = (\mathbb{N}, 0, 1, +, \cdot)$. (12 points)
3. Let $L = \{ \dot{f} \}$, where \dot{f} is a unary function symbol. Consider the following four L-structures:

- $A_1 = (\mathbb{R}, f)$ where f is given by $f(r) = r^2$;
- $A_2 = (\mathbb{N}, f)$ where f is given by $f(n) = n + 1$;
- $A_3 = (\mathbb{N}, f)$ where f is given by $f(n) = 2n$;
- $A_4 = (\mathbb{Z}, f)$ where f is given by $f(n) = n + 1$.

For each $i \in \{1, 2, 3, 4\}$, write down an L-sentence σ_i such that σ_i is true in A_i but false in all A_j for $j \neq i$. (12 points)
4. Indicate a sentence in the language $L = \{<\}$ of totally ordered sets that is true in all finite nonempty totally ordered sets but false in some infinite linearly ordered set. (12 points)

5. Let $L = \{\hat{0}, \hat{1}, \hat{-}, \hat{+}, \hat{\cdot}\}$, where $\hat{0}$ and $\hat{1}$ are constant symbols, $\hat{-}$ is a unary function symbol, and $\hat{+}$ is a binary function symbol. Let $A_1 = (\mathbb{C}, 0, 1, -, +, \cdot)$, $A_2 = (\mathbb{R}, 0, 1, -, +, \cdot)$, and $A_3 = (\mathbb{Q}, 0, 1, -, +, \cdot)$. Write down an L-sentence σ_1 which is true in A_1 but false in A_2, and an L-sentence σ_2 which is true in A_2 but false in A_3. (12 points)
6. Let $L = \{<\}$ be the language of totally ordered sets. Suppose σ is an L-sentence that is true in all infinite totally ordered sets. Show that there is a natural number N such that σ is also true in all finite totally ordered sets having more than N elements. (12 points)
7. Let L be a language and let σ be an L-sentence. The *spectrum* of σ is the set of cardinalities of finite models of σ, i.e. it is the set of all natural numbers n for which σ is satisfied in some structure the underlying set of which has exactly n elements. Exhibit a language L and a sentence σ such that the spectrum of σ is $\{1, 2, 3, 4\}$. (12 points)
8. Show that the theory of equivalence relations having infinitely many infinite equivalence classes is complete. (12 points)
9. Show that there exists a model $\mathcal{A} = (A, 0, 1, +, \cdot)$ of the theory of the structure $\mathcal{N} = (\mathbb{N}, 0, 1, +, \cdot)$ such that there exists $a \in A$ that is divisible by every $n \in \mathbb{N}$. (12 points)