Marks This will be a closed book exam. No notes will be permitted.

15 1. Define and discuss the following concepts:
 (a) Truncation error
 (b) Rounding error
 For each type of error, specify a method that could be used to reduce that
type of error. What effect, if any, would this method have on the other
type of error?

15 2. Evaluate \(I = \int_0^1 \frac{\cos(x)}{x^{4/5}} \, dx \) with an error less than 0.005.

 \(\text{Hint:} \) Replace \(\cos(x) \) by a general Taylor polynomial approximation plus
 its remainder.

3. Use Taylor polynomials to evaluate the following limits:

7 (a) \(\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2} \)

7 (b) \(\lim_{t \to 0} \frac{(1 + t^2)^{10} - 10 t \sin(t) - 1}{t^4} \)

6 4. Give an algorithm to evaluate \(p(x) = \sum_{k=0}^{8} (k + 2)x^k \) as efficiently as possible
 for \(x = 0.1 \). How many multiplications are necessary?